读书笔记吧

导航栏

×
你的位置: 笔记网 > 读书笔记 > 导航

高中物理匀变速直线运动的研究知识点总结

发表时间:2024-10-05

高中物理匀变速直线运动的研究知识点总结(汇集9篇)。

总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它能帮我们理顺知识结构,突出重点,突破难点,不妨让我们认真地完成总结吧。你所见过的总结应该是什么样的?以下是小编为大家整理的高中物理知识点总结,仅供参考,欢迎大家阅读。

高中物理匀变速直线运动的研究知识点总结 篇1

知识点:力和运动

受力分析、物体的平衡及其条件,是每年必考知识点。

预计在20xx年高考中,本专题内容仍然是高考命题的重点和热点,从近几年的试题难度看,本专题单独命题,难度可能不大,重在对基础知识与基本应用的考查,其中卫星导航、航天工程、宇宙探测、体育运动、科技与生活热点问题要特别关注。

知识点:动量和能量

安徽省高考对本专题的知识点考查频率非常高,每年必考,对动能定理、机械能守恒定律、功能关系考查难度较大。

“动量和能量观点是贯穿整个物理学最基本的观点,动量守恒定律、能量守恒定律是自然界中普遍适用的基本规律,涉及面广、综合性强、能力要求高,多年的压轴题均与本专题知识有关。”杨坤预计,在20xx年高考中,会继续延续近两年的命题特点,一种可能是以功——功率、动能定理和机械能守恒定律为考查热点,主要以选择题的形式出现,考查考生对基本概念、规律的掌握情况和初步应用的能力。另一种可能是与牛顿运动定律、曲线运动、电场和电磁感应等知识综合起来考查,题型以计算题为主。考题紧密联系生产生活、现代科技等问题,如传送带的功率消耗、站台的.节能设计、弹簧中的能量、碰撞中的动量守恒问题等。

知识点:带电粒子在电场和磁场中的运动

从历年来试题的难度上看,大多属于中等难度和较难的题,考题常以科学技术的具体问题为背景,考查从实际问题中获取并处理信息,解决实际问题的能力。

计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。

“20xx年高考理综物理试题仍将突出对电场和磁场中运动的考查,考查形式既可以是选择题也可以是计算题,选择题用来考查场的描述和性质、场力。” 杨坤分析,计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。其中电场和磁场知识与生产技术、生活实际、科学研究相结合,如示波管、质谱仪、回旋加速器、速度选择器和磁流体发电机等物理模型的应用问题要特别注意。

知识点:电磁感应和电路的分析、计算

在20xx年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。

考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题。

从近四年高考试卷知识点分布来看,高考对本专题的内容考查频率比较高,特别是电磁感应部分,每年必考。“对本专题知识点的考查,安徽省高考试题常以选择题的形式出现,但也有以计算题的形式出现的。”杨坤分析,对电路的考查则经常是与实验考查相结合,对串并联电路考查较浅,对交流电的考查相对来说较少而且偏易,对电磁感应的考查相对来说难度偏大,而且经常与其他知识点进行综合考查,不仅考查考生对基础知识和基本规律的掌握,还考查考生对基础知识和基本规律的理解与应用。

“预计在20xx年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。”杨坤老师强调,考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题,“在考试说明的题例中增加了滑轨类问题的实例,这或许是一个信号,希望能引起大家的注意。”

高中物理匀变速直线运动的研究知识点总结 篇2

第一节认识运动

机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。

运动的特性:普遍性,永恒性,多样性

参考系

1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。

2.参考系的选取是自由的。

1)比较两个物体的运动必须选用同一参考系。

2)参照物不一定静止,但被认为是静止的。

质点

1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。

2.质点条件:

1)物体中各点的运动情况完全相同(物体做平动)

2)物体的大小(线度)

3.质点具有相对性,而不具有绝对性。

4.理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体)

第二节时间位移

时间与时刻

1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。

△t=t2—t1

2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。

3.通常以问题中的初始时刻为零点。

路程和位移

1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。

2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。

3.物理学中,只有大小的`物理量称为标量;既有大小又有方向的物理量称为矢量。

4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。

第三节记录物体的运动信息

打点记时器:通过在纸带上打出一系列的点来记录物体运动信息的仪器。(电火花打点记时器——火花打点,电磁打点记时器——电磁打点);一般打出两个相邻的点的时间间隔是0.02s。

第四节物体运动的速度

物体通过的路程与所用的时间之比叫做速度。

平均速度(与位移、时间间隔相对应)

物体运动的平均速度v是物体的位移s与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是m/s。

v=s/t

瞬时速度(与位置时刻相对应)

瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。

速率≥速度

第五节速度变化的快慢加速度

1.物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值

a=(vt—v0)/t

2.a不由△v、t决定,而是由F、m决定。

3.变化量=末态量值—初态量值……表示变化的大小或多少

4.变化率=变化量/时间……表示变化快慢

5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。

6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。

第六节用图象描述直线运动

匀变速直线运动的位移图象

1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)

2.物理中,斜率k≠tanα(2坐标轴单位、物理意义不同)

3.图象中两图线的交点表示两物体在这一时刻相遇。

匀变速直线运动的速度图象

1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)

2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。

高中物理匀变速直线运动的研究知识点总结 篇3

【自由落体运动的定义】

从静止出发,只在重力作用下而降落的运动模式,叫自由落体运动。

自由落体运动是最典型的匀变速直线运动;是初速度为零,加速度为g的匀加速直线运动。

地球表面附近的上空可看作是恒定的重力场。如不考虑大气阻力,在该区域内的自由落体运动的方向是竖直向下的(并非指向地心),加速度为重力加速度g的匀加速直线运动。

只有在赤道上或者两极上,自由落体运动的方向(也就是重力的方向)才是指向地球中心的。

g≈9.8m/s^2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

【自由落体运动的基本公式】

(1)Vt=gt

(2)h=1/2gt^2

(3)Vt^2=2gh

这里的h与x同样都是指位移,一般在自由落体中用h表示数值方向的位移量。

【自由落体运动的研究先驱者】

对自由落体最先研究的是古希腊的科学家亚里士多德,他提出:物体下落的快慢是由物体本身的重量决定的,物体越重,下落得越快;反之,则下落得越慢。

亚里士多德,前384年4月23日-前322年3月7日,古希腊哲学家,柏拉图的学生、亚历山大大帝的老师。

他的著作包含许多学科,包括了物理学、形而上学、诗歌(包括戏剧)、生物学、动物学、逻辑学、政治、政府、以及学。和柏拉图、苏格拉底(柏拉图的老师)一起被誉为西方哲学的奠基者。亚里士多德的著作是西方哲学的第一个广泛系统,包含道德、美学、逻辑和科学、政治和玄学。

伽利略是意大利天文学家,也是世界物理学家。他于1564年诞生在意大利北部的比萨市,1642年1月8日去世,终年78岁。他毕生致力于科学事业,不仅为我们留下了时钟、望远镜和众多的科学专著,而且还为破除宗教迷信、科学偏见作出了杰出的贡献。

伽利略在1638年写的《两种新科学的对话》一书中指出:根据亚里士多德的论断,一块大石头的下落速度要比一块小石头的下落速度大。假定大石头的下落速度为8,小石头的下落速度为4,当我们把两块石头拴在一起时,下落快的会被下落慢的拖着而减慢,下落慢的会被下落快的拖着而加快,结果整个系统的下落速度应该小于8。但是两块石头拴在一起,加起来比大石头还要重,因此重物体比轻物体的下落速度要小。这样,就从重物体比轻物体下落得快的假设,推出了重物体比轻物体下落得慢的结论。亚里士多德的理论陷入了自相矛盾的境地。伽利略由此推断重物体不会比轻物体下落得快。伽利略的假设推导法,对物理思维方法起到了非常重要的`作用。

伽利略曾在的比萨斜塔做了的自由落体试验,让两个体积相同,质量不同的球从塔顶同时下落,结果两球同时落地,以实践驳倒了亚里士多德的结论。但是后来经过历史的严格考证,伽利略并没有在比萨斜塔做实验,人们却还是把比萨斜塔当作对伽利略的纪念碑。

高中物理匀变速直线运动的研究知识点总结 篇4

1、受力分析:

要根据力的概念,从物体所处的环境(与多少物体接触,处于什么场中)和运动状态着手,其常规如下:

(1)确定研究对象,并隔离出来;

(2)先画重力,然后弹力、摩擦力,再画电、磁场力;

(3)检查受力图,找出所画力的施力物体,分析结果能否使物体处于题设的运动状态(静止或加速),否则必然是多力或漏力;

(4)合力或分力不能重复列为物体所受的力.

2、整体法和隔离体法

(1)整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。

(2)隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的'作用力,不考虑物体对其它物体的作用力。

(3)方法选择

所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简单明了,而不必考虑内力的作用;当涉及的物理问题是物体间的作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。

3、注意事项:

正确分析物体的受力情况,是解决力学问题的基础和关键,在具体操作时应注意:

(1)弹力和摩擦力都是产生于相互接触的两个物体之间,因此要从接触点处判断弹力和摩擦力是否存在,如果存在,则根据弹力和摩擦力的方向,画好这两个力.

(2)画受力图时要逐一检查各个力,找不到施力物体的力一定是无中生有的.同时应只画物体的受力,不能把对象对其它物体的施力也画进去.

易错现象:

1.不能正确判定弹力和摩擦力的有无;

2.不能灵活选取研究对象;

3.受力分析时受力与施力分不清。

高中物理匀变速直线运动的研究知识点总结 篇5

匀变速直线运动的研究

匀变速直线运动是运动学中最典型的也是最简单的理想化的运动形式,学习本章的有关知识对于运动学将会有更深入地了解,难点在于速度、时间以及位移这三者物理量之间的关系。要熟练掌握有关的知识,灵活的加以运用。最后,本章末讲学习一种有代表性的匀变速直线运动形式:自由落体运动。

考试的要求:

Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。

Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。

要求Ⅱ:匀速直线运动,匀变速直线运动,速度与时间的关系,位移与时间的关系,位移与速度的关系,v-t图的物理意义以及图像上的有关信息。

高中物理匀变速直线运动的研究知识点总结 篇6

匀速直线运动的速度与时间的关系

●匀速直线运动

1、定义:物体沿着直线运动,而且保持加速度不变,这种运动叫做匀变速直线运动。

2、匀变速直线运动的分类:

3、匀变速直线运动的v-t图象

实验小车的v-t图象是一条倾斜直线。由此可知,无论Δt取何值,无论在什么时间阶段,Δt对应的.速度变化Δv都相同,即Δv/Δt不变,则物体的 加速度不变。所以匀变速直线运动的v-t图象是一条倾斜直线。在数学函数图象中,Δv/Δt叫做图象的斜率,故v-t图象的斜率表示物体做匀变速直线运动 的加速度的大小。

高中物理匀变速直线运动的研究知识点总结 篇7

第一章运动的描述

一、基本概念

1、质点

2、 参考系

3、坐标系

4、时刻和时间间隔

5、路程:物体运动轨迹的长度

6、位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。位移的大小小于或等于路程。

7、速度:

物理意义:表示物体位置变化的快慢程度。

分类平均速度:方向与位移方向相同

瞬时速度:

与速率的区别和联系速度是矢量,而速率是标量

平均速度=位移/时间,平均速率=路程/时间

瞬时速度的大小等于瞬时速率

8、加速度

物理意义:表示物体速度变化的快慢程度

定义:(即等于速度的变化率)

方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)

二、运动图象(只研究直线运动)

1、x—t图象(即位移图象)

(1)、纵截距表示物体的初始位置。

(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。

(3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。

2、v—t图象(速度图象)

(1)、纵截距表示物体的初速度。

(2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。

(3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。

(4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。

(5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。

三、实验:用打点计时器测速度

1、两种打点即使器的异同点

2、纸带分析;

(1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。

(2)、可计算出经过某点的瞬时速度

(3)、可计算出加速度

第二章匀变速直线运动的研究

一、基本关系式v=v0+at

x=v0t+1/2at2

v2-vo2=2ax

v=x/t=(v0+v)/2

二、推论

1、 vt/2=v=(v0+v)/2

2、vx/2=

3、△x=at2 { xm-xn=(m-n)at2}

4、初速度为零的匀变速直线运动的比例式

应用基本关系式和推论时注意:

(1)、确定研究对象在哪个运动过程,并根据题意画出示意图。

(2)、求解运动学问题时一般都有多种解法,并探求最佳解法。

三、两种运动特例

(1)、自由落体运动:v0=0 a=g v=gt h=1/2gt2 v2=2gh

(2)、竖直上抛运动;v0=0 a=-g

四、关于追及与相遇问题

1、寻找三个关系:时间关系,速度关系,位移关系。两物体速度相等是两物体有最大或最小距离的临界条件。

2、处理方法:物理法,数学法,图象法。

五、理解伽俐略科学研究过程的基本要素。

第三章相互作用

一、三种常见的.力

1、重力:由于地球对物体的吸引而产生的。大小:G=mg,方向:竖直向下,

作用点:重心(重力的等效作用点)

2、弹力

(1)、形变、弹性形变、定义等。

(2)、产生条件:

(3)、拉力、支持力、压力。(按照力的作用效果来命名的)

(4)、弹簧的弹力的大小和方向,胡克定律F=kx

(5)、可用假设法来判断是否存在弹力。

3、摩擦力

(1)、静摩擦力:①、产生条件②、方向判断

③、大小要用“力的平衡”或“牛顿运动定律”来解。

(2)滑动摩擦力:①、产生条件②、方向判断

③、大小:f=uN。也可用“力的平衡”或“牛顿运动定律”来解。

(3)、可用假设法来判断是否存在摩擦力。

二、力的合成

1、定义;由分力求合力的过程。

2、合成法则:平行四边形定则或三角形定则。

3、求合力的方法

①、作图法(用刻度尺和量角器) ②、计算法(通常是利用直角三角形)

2、合力与分力的大小关系

三、力的分解

1、分解法则:平行四边形定则或三角形定则、

2、分解原则:按照实际作用效果分解(即已知两分力的方向)

3、把一个已知力分解为两个分力

①、已知两个分力的方向,求两个分力的大小。(解是唯一的)

②、已知一个分力的大小和方向,求另一个分力的大小和方向,(解是唯一的)

(注意:通过作平行四边形或三角形判断)

4、合力和分力是“等效替代”的关系。

三、实验:探究求合力的方法(或“验证平行四边形定则”)

第四章牛顿运动定律

一、牛顿第一定律

1、内容:(揭示物体不受力或合力为零的情形)

2、两个概念:①、力

②、惯性:(一切物体都具有惯性,质量是惯性大小的唯一量)

二、牛顿第二定律

1、内容:(不能从纯数学的角度表述)

2、公式:F合=ma

3、理解牛顿第二定律的要点:

①、式中F是物体所受的一切外力的合力。②、矢量性③、瞬时性

④、独立性⑤、相对性

三、牛顿第三定律

作用力和反作用力的概念

1、内容

2、作用力和反作用力的特点:①等值、反向、共线、异点②瞬时对应③性质相同

④各自产生其作用效果

3、一对相互作用力与一对平衡力的异同点

四、力学单位制

1、力学基本物理量:长度(l)质量(m)时间(t)

力学基本单位:米(m)千克(kg)秒(s)

2、应用:用单位判断结果表达式,能肯定错误(但不能肯定正确)

五、动力学的两类问题。

1、已知物体的受力情况,求物体的运动情况(v0 v t x )

2、已知物体的运动情况,求物体的受力情况( F合或某个分力)

3、应用牛顿第二定律解决问题的一般思路

(1)明确研究对象。

(2)对研究对象进行受力情况分析,画出受力示意图。

(3)建立直角坐标系,以初速度的方向或运动方向为正方向,与正方向相同的力为正,与正方向相反的力为负。在Y轴和X轴分别列牛顿第二定律的方程。

(4)解方程时,所有物理量都应统一单位,一般统一为国际单位。

4、分析两类问题的基本方法

(1)抓住受力情况和运动情况之间联系的桥梁——加速度。

(2)分析流程图

六、平衡状态、平衡条件、推论

1、处理方法:解三角形法(合成法、分解法、相似三角形法、封闭三角形法)和正交分解法

2、若物体受三力平衡,封闭三角形法最简捷。若物体受四力或四力以上平衡,用正交分解法

七、超重和失重

1、超重现象和失重现象

2、超重指加速度向上(加速上升和减速下降),超了ma;失重指加速度向下(加速下降和减速上升),失ma。

高中物理匀变速直线运动的研究知识点总结 篇8

力的合成与分解

(1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡

(2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上

(3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成

①确定研究对象;

②分析受力情况;

③建立适当坐标;

④列出平衡方程

牛顿第三定律:

(1)内容:

两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。

(2)理解:

①作用力和反作用力的同时性.它们是同时产生,同时变化,同时消失,不是先有作用力后有反作用力。

②作用力和反作用力的性质相同.即作用力和反作用力是属同种性质的力。

③作用力和反作用力的相互依赖性:它们是相互依存,互以对方作为自己存在的前提。

④作用力和反作用力的不可叠加性.作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两力的作用效果不能相互抵消。

自由落体

1.初速度Vo=0

2.末速度Vt=gt

3.下落高度h=gt^2/2(从Vo位置向下计算)

4.推论Vt^2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g=9.8m/s^2≈10m/s^2重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

(3)竖直上抛

探究弹力

1.产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。

2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。

绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。

弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。

3.在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。

F=kx

4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的'难易程度。

5.弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2

用图象描述直线运动

匀变速直线运动的位移图象

1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)

2.物理中,斜率k≠tanα(坐标轴单位、物理意义不同)

3.图象中两图线的交点表示两物体在这一时刻相遇。

匀变速直线运动的速度图象

1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)

2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。

高中物理匀变速直线运动的研究知识点总结 篇9

知识点概述

能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。这就是能量守恒定律,如今被人们普遍认同。

知识点总结

一、能量的转化与守恒

1.化学能:由于化学反应,物质的分子结构变化而产生的能量。

2.核能:由于核反应,物质的原子结构发生变化而产生的能量。

3.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能的总量保持不变。

●内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

E机械能1+E其它1=E机械能2+E其它2

●能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。

二、能源与社会

1.可再生能源:可以长期提供或可以再生的能源。

2.不可再生能源:一旦消耗就很难再生的能源。

3.能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。

三、开发新能源

1.太阳能

2.核能

3.核能发电

4、其它新能源:地热能、潮汐能、风能。

能源的分类和能量的转化

能源品种繁多,按其来源可以分为三大类:一是来自地球以外的太阳能,除太阳的辐射能之外,煤炭、石油、天然气、水能、风能等都间接来自太阳能;第二类来自地球本身,如地热能,原子核能(核燃料铀、钍等存在于地球自然界);第三类则是由月球、太阳等天体对地球的引力而产生的能量,如潮汐能。

【一次能源】指在自然界现成存在,可以直接取得且不必改变其基本形态的能源,如煤炭、天然气、地热、水能等。由一次能源经过加工或转换成另一种形态的能源产品,如电力、焦炭、汽油、柴油、煤气等属于二次能源。

【常规能源】也叫传统能源,就是指已经大规模生产和广泛利用的能源。表2-1所统计的几种能源中如煤炭、石油、天然气、核能等都属一次性非再生的常规能源。而水电则属于再生能源,如葛洲坝水电站和未来的三峡水电站,只要长江水不干涸,发电也就不会停止。煤和石油天然气则不然,它们在地壳中是经千百万年形成的(按现在的采用速率,石油可用几十年,煤炭可用几百年),这些能源短期内不可能再生,因而人们对此有危机感是很自然的。

【新能源】指以新技术为基础,系统开发利用的能源。其中最引人注目的是太阳能的利用。据估计太阳辐射到地球表面的能量是目前全世界能量消费的1.3万倍。如何把这些能量收集起来为我们所用,是科学家们十分关心的问题。植物的光合作用是自然界“利用”太阳能极为成功的范例。它不仅为大地带来了郁郁葱葱的森林和养育万物的粮菜瓜果,地球蕴藏的煤、石油、天然气的起源也与此有关。寻找有效的光合作用的模拟体系、利用太阳能使水分解为氢气和氧气及直接将太阳能转变为电能等都是当今科学技术的重要课题,一直受到各国政府和工业界的支持与鼓励。

以上是从能源的使用进行分类的方法,若从物质运动的形式看,不同的运动形式,各有对应的能量,如机械能(包括动能和势能)、热能、电能、光能等等。各种形式的能量可以互相转化,如动能可与势能互相转化(建筑工地打夯的落锤的上、下运动所包括的能量转化过程);化学能可与电能互相转化(化学电池和电解就是实现这种转化的两种过程)。在能量相互转化过程中,尽管做功的效率因所用工具或技术不同而有差别,但是折算成同种能量时,其总值却是不变的,这就是能量转化和能量守恒定律,这是自然界中一条极为基本的定律(另一条为质量守恒定律),也是识破各式各样永动机的有力判据。在能量转化过程过中,未能做有用功的部分称为“无用功”,通常以热的形式表现。

物质体系中,分子的动能、势能、电子能量和核能等的总和称为内能。内能的绝对值至今尚无法直接测定,但体系状态发生变化时,内能的变化以功或热的形式表现,它们是可以被精确测量的。体系的内能、热效应和功之间的关系式为:

△E=Q+W

其中△E是体系内能的变化,Q是体系从外界吸收的热量,W是外界对体系所做的功。这就是著名的'热力学第一定律的数学表达式,也就是能量守恒定律的数学表达式。应用上述公式时,要注意各种物理量的正、负号,即:

△E──(+)体系内能增加, (-)体系内能体系减少;

Q──(+)体系吸收热量, (-)体系放出能量;

W──(+)外界对体系做功, (-)体系对外界做功。

例如1.00 g乙醇在78.3℃时气化,需吸收 854 J的热,这些乙醇由液态变成气态,在101 kPa压力下所做的体积膨胀功为63.2J,这是体系对外界所做的功,应为负值,所以该体系内能的变化△E=[854+(- 63.2)]J=+791J,△E为正值,即体系内能增加了791J。

能源的利用,其实就是能量的转化过程。如煤燃烧放热使蒸汽温度升高的过程就是化学能转化为蒸汽内能的过程;高温蒸汽推动发电机发电的过程是内能转化为电能的过程;电能通过电动机可转化为机械能;电能通过白炽灯泡或荧光灯管可转化为光能;电能通过电解槽可转化为化学能等等。柴草、煤炭、石油和天然气等常用能源所提供的能量都是随化学变化而产生的,多种新能源的利用也与化学变化有关。化学变化的实质是化学键的改组,所以了解化学键及键能等基本概念,将有助于加深对能源问题的认识。

猜你喜欢